
Fair Benchmarking Considered Di�icult:
Common Pitfalls In Database Performance Testing

Mark Raasveldt, Pedro Holanda, Tim Gubner & Hannes Mühleisen
Centrum Wiskunde & Informatica (CWI)

Amsterdam, The Netherlands
[raasveld,holanda,tgubner,hannes]@cwi.nl

ABSTRACT
Performance benchmarking is one of the most commonly used
methods for comparing di�erent systems or algorithms, both in
scienti�c literature and in industrial publications. While perfor-
mance measurements might seem like an objective measurement
on the surface, there are many di�erent ways to in�uence bench-
mark results to favor one system over the other, either by accident
or on purpose. In this paper, we perform an extensive study of the
common pitfalls in database performance comparisons, and give
tips on how they can be spotted and avoided so a fair performance
comparison between systems can be made. We illustrate the com-
mon pitfalls with a series of mock benchmarks, which show large
di�erences in performance where none should be present.

CCS CONCEPTS
• Information systems→Database performance evaluation;

KEYWORDS
Benchmarking, Performance Evaluation
ACM Reference Format:
Mark Raasveldt, Pedro Holanda, Tim Gubner & Hannes Mühleisen. 2018.
Fair Benchmarking Considered Di�cult: Common Pitfalls In Database Per-
formance Testing. In Proceedings of 7th International Workshop on Testing
Database Systems (DBTEST’18). ACM, New York, NY, USA, 7 pages.

1 INTRODUCTION
Reporting experimental results is highly popular in data manage-
ment research. Good-looking experimental results lend credence to
otherwise hard-to-judge proposals. For certain publication venues,
submitting a paper without experimental results and a graph like
Figure 1 is unwise. However, the great emphasis being put on exper-
imental results regularly leads to questionable experimental setups
and therefore questionable results.

Performance is one of the easiest to measure quality metrics
of any system. It is an attractive measure of how good a given
system or algorithm is, because it is an “objective” measurement
that makes it easy to compare two di�erent systems to one another.
Performance metrics are frequently used in both scienti�c papers
and by database vendors to show how newly proposed systems or
algorithms perform.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DBTEST’18, June 2018, Houston, Texas USA
© 2018 Copyright held by the owner/author(s).

Fast

Slow

Our System Their System

Sp
ee

d

Figure 1: Generic benchmark results.

However, there is a fundamental con�ict of interest when run-
ning performance benchmarks, especially when an evaluation is
performed against previous work. Researchers are incentivized to
make their work compare favorably with previous work. Whether
intentionaly or inadvertently, this will lead to a disadvantage for
previous work, for example through less careful con�guration. The
experimental results that are then published frequently lead to
heated disputes between researchers. The con�ict of interest is
even more pronounced when companies publish benchmark results
comparing their systems with the competition. Some of those re-
sults have been prominently denounced as “benchmarketing” [7],
but still occur often.

Fair performance benchmarking is all but trivial, and it is very
easy to misrepresent performance information to make one system
or algorithm look better than another, either by accident or on pur-
pose. In this paper, we will explore the common pitfalls in database
performance benchmarking that are present in a large number of
scienti�c works, and describe how to avoid them in order to make
fair performance comparisons.

Contributions. The main contributions of this paper are as
follows:

• We perform a literature study on di�erent techniques for
reproducible benchmarking of generic computer science pro-
grams.

• We explore how these techniques �t into the database bench-
marking scene, and discuss commonlymade database-speci�c
benchmarking mistakes that result in misleading perfor-
mance comparisons.

• We discuss how these mistakes can be spotted and avoided
in order to perform a fair comparison between di�erent
database systems and algorithms.



DBTEST’18, June 2018, Houston, Texas USA Mark Raasveldt, Pedro Holanda, Tim Gubner & Hannes Mühleisen

Outline. This paper is organized as follows: Section 2 discusses
related work in conducting fair performance comparisons. In Sec-
tion 3, we discuss common pitfalls when performing fair bench-
marking of database systems. We draw our conclusions in Section 4.
Finally, in Appendix A, we provide a checklist that can be used to
ensure that a performance comparison between systems is fair.

2 RELATEDWORK
Performance analysis and comparison has long been recognized
as a critical issue in practical computer science in general, and sys-
tems research in particular. Ideally, performance analysis is done
according to the principles of controlled experiments, where the
environment is tightly controlled and individual variables are var-
ied to study their impact. Several collections of best practices and
recommendations exist.

2.1 General Guidelines
The general experimental process consists of experimental planning
and setup, experiment execution, data collection, data analysis and
presentation. Data analysis and presentation are generic over many
�elds of natural sciences. In statistical data analysis, common issues
include “cherry-picking” data, hiding extremes in averages and
presenting di�erences caused by limited accuracy or noise [11].
We note that these issues are also applicable to data management
research, but do not focus on them in particular. Similarly, the
visual presentation of experimental results through plots is prone
to misleading usage. For example, poorly chosen scales make it
di�cult to draw correct conclusions from them [21].

Regarding practical Computer Science, Jain distinguishes be-
tween “mistakes” and “games” in benchmarking [12, p. 127�]: Mis-
takes are considered to be ill-advised but inadvertent choices re-
garding benchmark planning and execution. For example, the test
workload may be ill-chosen to represent the real-world workload
by only focusing on average behavior. Games on the other hand are
deliberate and purposeful manipulation of the experiment to elicit
a speci�c outcome. For example, if the software or hardware con-
�guration di�ers between experiments, results are not comparable.

The issue of misleading performance experimentation through
benchmarks has been discussed extensively in theHigh-Performance
Computing (HPC) community, for example concerning the impact
of compilation �ags [15]. Hoe�er and Belli describe 12 “rules” for
HPC benchmarking [10]: They derive common pitfalls and recom-
mendations to avoid them from issues identi�ed in 120 HPC papers.
They stress “interpretability” of experimental results; such that they
“provide enough information to allow scientists to understand the
experiment, draw their own conclusions, assess their certainty, and
possibly generalize results”. They identify a host of issues, among
them misleading uses of derived metrics such as speedup or geo-
metric means, selective reporting of results without reason and
incorrect use of statistical summaries. For example, they stress that
averages should only be used if there is no variance in the result
measurement, which is almost never the case in benchmarking.

Van der Kouwe et al. [20] describe a number of benchmarking
“crimes” in the systems security context, where benchmarking is
increasingly important. They note that these crimes threaten the
validity of research results and thereby hamper progress. Building

on the list of benchmarking crimes [9]. They describe the need
for “complete, relevant, sound and reproducible” experimentation.
From an extensive survey of 50 top-tier papers from the �eld, they
�nd that easily preventable benchmarking crimes have been and
are widespread, with various issues found in 96% of papers.

2.2 Database-Speci�c Guidelines
In the data management �eld, Gray cites widespread “Benchmar-
keting” as the motivation to devise formal benchmark speci�ca-
tions with precise descriptions of setup, allowed optimizations and
metrics to be computed [7, ch. 1]. O’Neil’s description of the Set
Query Benchmark [7, ch. 5] contains a “checklist” of con�guration
and reporting requirements. This checklist stresses some important
points for benchmarking database systems (summarized here): Data
should be generated in the precise manner speci�ed, and reports
should include resource utilization for loading and disk space for
the database, the exact hardware/software con�guration, e�ective
query plans, overhead of collecting statistics, memory usage over
time, elapsed time, CPU time and I/O operation count.

Nelson expands on O’Neil’s list with a similar checklist in a
subsequent chapter [7, ch. 7]. For example, emphasis is put on the
need for equivalent syntax of benchmark queries between system,
to avoid giving a single system unfair advantages.

Similarly, the current edition of the well-known TPC-H bench-
mark lists various guidelines for benchmark implementation that
are also applicable beyond TPC-H [2, ch, 0.2]. In particular, systems
built solely to perform well on this particular benchmark are pro-
hibited from the o�cial competitors. There are several criteria to
determine whether this is the case. For example, it is forbidden to
take advantage of the limited nature of [functionality tested by the
benchmark] and systems may not be signi�cantly limited in their
functionality beyond the benchmark. However, in scienti�c publi-
cations the benchmarks only very rarely run to this speci�cation.

Manolescu and Manegold describe principles of performance
evaluation extensively in databases [14]. They note that “absolutely
fair comparisons are virtually impossible”, but point out compiler
�ags, con�guration, query plans and several other factors as pitfalls.
They suggest a healthy dose of critical thinking when confronted
with experimental results collected by others. Interestingly, they
also note that solid craftsmanship is a required pre-condition for
“good and repeatable performance evaluation”.

Recently, Purohith et al. point out benchmarking “dangers” using
SQLite as an example [17]. They show that transaction through-
put performance varies by a factor of 28 depending on a single
parameter setting and point out that none of 16 papers surveyed
reported the parameters necessary to interpret benchmark results.
They continue to discuss the impact of a number of in�uential
SQLite parameters.

3 COMMON PITFALLS
In this section, we will discuss di�erent pitfalls that are commonly
made when attempting to perform a performance comparison be-
tween di�erent database management systems. We will describe
how to recognize them, and provide arti�cial examples of many of
the mistakes made and the impact they can have on the experimen-
tal results.



Fair Benchmarking Considered Di�icult:
Common Pitfalls In Database Performance Testing DBTEST’18, June 2018, Houston, Texas USA

All experiments in this section were run on a desktop-class
computer with an Intel i7-2600K CPU clocked at 3.40GHz and 16
GB of main memory running Fedora 26 Linux with Kernel version
4.14. We used GCC version 7.3.1 to compile systems. All systems
were con�gured to only use one of the eight available hardware
threads for fairness. Furthermore, unless indicated otherwise, we
have attempted to con�gure the systems to take full advantage of
available memory. Versions used were MariaDB 10.2.13, MonetDB
11.27.13, SQLite 3.20.1, and PostgreSQL 9.6.1. More information
about the con�guration (e.g., compilation �ags) can be found in the
source code.

We report themedian value togetherwith non-parametric, quantile-
based 95% con�dence intervals as recommended by [4, 10]. Our
experimental scripts, results, con�guration parameters and plotting
code are available1.

Wewould like to stress that inclusion of a particular system in the
experiments below is purely illustrational and in no way implying
misleading benchmark results in the corresponding publications.

3.1 Non-Reproducibility
The possibility of reproducing experiments is one of the foundations
of scienti�c research. It allows other researchers to verify results and
spot any mistakes made while conducting the original experiment.
When providing experimental results that are not reproducible, it
is possible to claim anything and report any numbers, as nobody
can verify that they are correct.

An article about computational result is advertising,
not scholarship. The actual scholarship is the full soft-
ware environment, code and data, that produced the
result. [5, 6]

In data management it is relatively easy to make reproducible
experiments, as performing a performance benchmark is much
easier and cheaper than, for example, conducting a large scienti�c
survey. Unfortunately, many authors of database papers do not
provide for ways to easily reproduce their experiments. In many
papers the code used by the authors to run the benchmark is kept
as closed-source or “on request” from a non-responsive e-mail
address. In other cases, the data or queries used are not disclosed,
or proprietary hardware or back-end systems are used to run the
experiments. Often, “intellectual property” and related reasons are
cited as reasons for the inability to allow reproduction.

Astonishingly, it is still acceptable to publish an explicitly non-
reproducible paper at major data management conferences. There
are some attempts to improve the situation, for example the “SIG-
MOD Reproducibility” project or the preceding SIGMOD repeata-
bility experiment [13], but participation is/was not mandatory. The
consequence is that reviewers and readers have to simply trust
authors of a non-reproducible paper that their results have been ob-
tained properly even though they theoretically could claim to have
measured whatever results they wanted. Calling systems “DBMS-X”
to avoid incurring the wrath of their legal departments (“DeWitt
clause”) is also counter-productive for reproducibility. Even if some-
one had access to a particular system, how would one know which
one was used [22]?

1https://github.com/pholanda/FairBenchmarking

12.18

9.73 9.73
8.19 8.19

4.7

MariaDB Postgres Postgres SQLite SQLite MariaDB*
0

5

10

M
ed

ia
n 

tim
e 

(s
)

Figure 2: TPC-H Scale Factor 1 Query 1 Results.

Figure 2 shows an exaggerated example of the possible conse-
quences of this situation. Here, we present experiments comparing
the performance of TPC-H Query 1 on SF1 between MariaDB, Post-
greSQL and SQLite. The leftmost panel shows PostgreSQL being
faster than MariaDB. The middle panel shows SQLite being faster
than PostgreSQL. The right panel �nally shows MariaDB* being
faster than SQLite. So MariaDB is both the slowest and the fastest
system. This is obviously a contradictory situation that is provoked
here for illustratory purposes, with M < P , P < S and S < M ,
creating a contradiction similar to the famous paintings by M.C.
Escher.

Without extensive details on the benchmark execution, however,
it would be impossible to realize that MariaDB* used �oating-point
columns (DOUBLE instead of DECIMAL) in the lineitem table, which
made a very signi�cant performance di�erence due to an ine�cient
decimal implementation in MariaDB. Note that both variants are
allowed according to the TPC-H benchmark specitication [2, sec.
1.3].

How To Avoid. In order to allow for reproducible experiments,
it is important that all con�guration parameters are known so the
experiment can be exactly reproduced. This includes seemingly
minor factors such as the operating system the machine is running
on, how the server is installed, the server version, how the server
is setup and the server con�guration �ags. In addition, when com-
paring against the authors’ own algorithm or implementation, the
source code should always be available to allow people to reproduce
the experiments.

3.2 Failure To Optimize
Benchmarks are often used as a way of comparing two systems,
or as a measure for how e�ective a newly proposed algorithm or
technique is. As a result, the general setup of experiments is to
compare the authors’ newly proposed system or algorithm against
an existing system, and show that the authors’ system performs
better than the current state of the art.

However, this experimental setup gives the author very little in-
centive to properly optimize the current system. The worse the state
of the art system does, the better the authors’ system looks. This
can be problematic, especially for certain systems that rely heavily
on proper con�guration, as the performance of an improperly con-
�gured system can be signi�cantly worse than the performance of
a properly con�gured system.

Di�ering Compilation Flags.When compiling a database sys-
tem from source, the proper compilation �ags can result in a signif-
icant performance di�erence. Sanity checking code that is enabled

https://github.com/pholanda/FairBenchmarking


DBTEST’18, June 2018, Houston, Texas USA Mark Raasveldt, Pedro Holanda, Tim Gubner & Hannes Mühleisen

1.58

0.87

0.0

0.5

1.0

1.5

MonetDB MonetDB*

M
ed

ia
n 

tim
e 

(s
)

Figure 3: TPC-H Scale Factor 1 Query 1 Results.

0.47

0.27

0.0

0.1

0.2

0.3

0.4

0.5

Postgres Postgres*

M
ed

ia
n 

tim
e 

(s
)

Figure 4: TPC-H Scale Factor 1 Query 9 Results.

only for debug builds can result in signi�cant performance slow-
downs. Figure 3 shows the signi�cant performance di�erence be-
tween two systems, DBMS A and B. They are actually simply either
an unoptimized (a) and an optimized (b) build of MonetDB. The
unoptimized build automatically includes sanity checking code that
scans entire columns to ensure certain properties hold. However,
these scans are only included to detect bugs, and are not neces-
sary for the operation of the database system. However, compiling
MonetDB from the source repository without explicitly enabling
an optimized build results in these checks being performed, thus it
is easily overlooked by accident.

Sub-Optimal Con�guration. Many database systems include
a long list of con�guration �ags that change various di�erent as-
pects of how the database operates. Certain databases, such as
MonetDB [3] or Peloton [16] are designed to include only a few
con�guration parameters. Others, such as PostgreSQL [19] and
MariaDB ship with a large con�guration �le that allows you to
modify anything ranging from the maximum amount of connec-
tions to the entire underlying storage engine of the database. These
settings have a profound e�ect on the performance of the system.
Consider, for example, the benchmark shown in Figure 4, where we
measure the performance of PostgreSQL executing Q9 of the TPC-H
benchmark. By using di�erent con�guration �ags the performance
of the database improves drastically.

How To Avoid. Unfortunately, optimizing a DBMS for a par-
ticular workload is far from a trivial task. It is so complex that
there is an entire profession dedicated to the purpose. However,
even performing a small amount of optimizations goes a long way
towards making a more fair performance comparison, including
reading the guidelines written on how to optimize a speci�c system
for a benchmark. Another option is to involve representatives from
the systems that are compared, or to use con�guration options used
in previous publications from those representatives.

0.87

0.03
0.00

0.25

0.50

0.75

MonetDB 'TimDB'

M
ed

ia
n 

tim
e 

(s
)

Figure 5: TPC-H Scale Factor 1 Query 1 Results.

3.3 Apples vs Oranges
A performance comparison between two systems can only be fair
if both systems perform the exact same functionality. This might
seem obvious, however, there are many cases in which small di�er-
ences are ignored that could explain a large part of the observed
performance di�erence.

The most common way in which this occurs is when a small,
standalone program is compared against a full-�edged DBMS. The
full-�edged DBMS has to perform many di�erent tasks. It has to
handle arbitrary queries, maintain transaction isolation, handle
updates to the data and deal with multiple clients issuing queries
in parallel. These can all lead to restrictions in what the DBMS is
capable of when it comes to a speci�c task. Meanwhile, the stand-
alone program only has to perform that one speci�c task. This lack
of restrictions will lead to the stand-alone program performing
better than the database at that speci�c task, however, in many
cases the performance of the algorithm will go down when it is
properly integrated into the DBMS as suddenly error checking code
has to be introduced and changes to the code have to be made to
properly consider all these factors. Figure 5 shows how a hand
optimized stand-alone program compares against the fairly feature-
complete MonetDB system [3] when executing Query 1 of the
TPC-H benchmark, clearly an unfair and misleading comparison.

Subtle di�erences in functionality can also lead to di�erent per-
formance characteristics. For example, over�ow handling is an
often overlooked part of query execution. However handling over-
�ows is necessary to guarantee correct query results regardless of
which data is stored in the database. To safely handle over�ows
one can either check for over�ows, so called over�ow checking, or
ensure that no over�ows occur on the data set, so called over�ow
prevention [8]. Comparing an implementation with over�ow han-
dling to an implementation without over�ow handling is not a fair
comparison.

How To Avoid.When comparing two systems, it is important
that the same functionality is measured.When benchmarking a new
algorithm, it should ideally be correctly integrated into a complete
system, in which case it can be compared against other full systems.
It should also always be veri�ed that the new algorithm provides
the exact same results as the old algorithm in all cases.

3.4 Over-speci�c Tuning
Standardized benchmarks, such as the TPC-H [2] and TPC-C [1], are
a great step towards making experiments reproducible, as everyone
running the benchmark is executing the same queries on the same



Fair Benchmarking Considered Di�icult:
Common Pitfalls In Database Performance Testing DBTEST’18, June 2018, Houston, Texas USA

dataset. However, they introduce a new issue: heavily tuning a
system or algorithm towards a speci�c benchmark.

Since everything about the standardized benchmark is known up
front (e.g. the speci�c workload, cardinalities of intermediates, dis-
tributions of data, selectivities of predicates and amount of groups
created) a large amount of benchmark-speci�c optimizations can
be performed. Heuristics can be tuned so the correct join orders
are always chosen on the benchmark, and the data can be sharded
in such a way that the work is exactly evenly split among di�erent
nodes for the benchmark. These can all lead to a system having
better performance on a speci�c benchmark than another system,
while performing worse when dealing with a set of similar queries.

How To Avoid. These issues can be prevented by running more
experiments rather than only the standardized benchmarks. While
the standardized benchmarks are a good baseline comparison, cer-
tain systems optimize against a benchmark so heavily that it is no
longer a good tool for comparing them to other systems. In addition
to running the standard benchmark, a set of di�erent queries should
be run and measured as well.

3.5 Cold/Warm/Hot Runs
It is important that a di�erentiation between so-called “hot” and
“cold” runs is made. For certain systems and workloads, the initial
(cold) run will take signi�cantly longer than subsequent “hot” runs
as relevant data needs to be loaded from persistent storage and the
query is parsed/compiled into native code. Subsequent (hot) runs
are often faster, as either the bu�er pool or the operating system
would have already cached the required data, and it is a common
feature for databases to include a plan cache in case the same query
is run again soon. For this reason, results from hot and cold runs
should be reported separately.

In addition, care should be taken when measuring a cold run, as
a “warm” run might be measured by accident [14]. It is not trivial to
properly measure cold runs. A typical way to collect cold run data is
to restart the database server, run a query, and repeat. However, this
process ignores the fact that operating systems will use available
main memory to cache hard disk blocks for added I/O e�ciency.
The proper way to collect cold run data is thus to stop the database
server, drop all OS caches2, start the server again, run and time a
single query, and repeat. Moreover, in a cloud environment, clearing
the caches might be downright impossible because caching might
also occur on the virtualization host. There, the only choice might
be to start another virtual machine. Both processes makes collecting
proper cold run times very time-consuming and inconvenient.

3.6 Ignoring Preprocessing Time
Often in performance benchmarks the setup time (including loading
the data into the database and performing preprocessing) is ignored.
Hence the creation time of indices is also disregarded. It should be
noted that this can also unfairly give certain systems advantages
over other systems, as often spending more time on index creation
will lead to a faster index. However, if the creation time is discarded
as part of the preprocessing time, DBMSs that have expensive-to-
construct but e�cient indices are given an unfair advantage over

2
echo 3 > /proc/sys/vm/drop_caches with root privileges (!) on recent Linux
systems

databases that have cheap-to-construct indices that might perform
less e�ciently.

Even if indices are not explicitly created, certain databases might
perform indexing or other steps while loading the data. For example,
MonetDB will automatically create imprints on a column when
a range �lter is applied, leading to subsequent range queries on
that column performing signi�cantly better. When the timing of
the initial query is ignored (as part of a “cold” run), this can lead
to misleading performance results when compared with a RDBMS
which does not use automatic indices.

Another automatic preprocessing step to be aware of is automatic
dictionary encoding of string values. When a string column is
loaded into MonetDB, for example, the strings are stored as integer
o�sets into a heap and duplicate strings are eliminated. In this
system, an equality comparison between strings in the query can
be answered using only integer comparisons, which is much faster
than performing complete string comparisons.

How To Avoid. Either create indexes for both systems that are
being benchmarked, or do not create indexes for both systems.
Be wary of systems that include automatic index creation or pre-
processing techniques, to ensure that they do not have an unfair
advantage when preprocessing time is ignored.

3.7 Incorrect Code
When measuring the performance of a newly designed algorithm, it
is possible that bugs in the implementation are overlooked by acci-
dent. A problem with the implementation might result in incorrect
results being produced. If these results are not checked, but only
the performance is measured, the benchmark could be measuring
an incorrect implementation of the algorithm that might be faster
because the bug results in e.g. less data being touched. This problem
is exasperated when the benchmark is not reproducible, as the prob-
lem may not be discovered and the performance results presented
in the paper may be taken as fact, even though the implementation
that is measured is incorrect.

Another more subtle way in which a program can be incorrect
is in that it works for a speci�c set of data, but does not answer
the query correctly in the general case. This can happen when e.g.
over�ow handling is neglected, or when the program takes advan-
tage of speci�c properties of the current dataset such as hardcoding
the amount of groups in an aggregation.

How To Avoid. Always check whether your program provides
the correct output for a speci�c query by comparing the output
against reference answers, either obtained either from the bench-
mark speci�cation or from running the same query with the same
dataset in a well-known and well-tested RDBMS such as SQLite or
PostgreSQL. In addition, make sure to check if the program provides
the correct results for the query even when the data is changed.

4 CONCLUSIONS AND OUTLOOK
We are optimistic that issues we have discussed in this paper will be
addressed in due time by the data management community. Besides
raising awareness of pitfalls we also believe that enforcing repro-
ducibility will result in a self-reinforcing e�ect where more care
is taken to ensure results hold up when experiments are repeated
by others. Not ensuring reproducibility is not an alternative, there



DBTEST’18, June 2018, Houston, Texas USA Mark Raasveldt, Pedro Holanda, Tim Gubner & Hannes Mühleisen

are numerous examples of other �elds of research where decades
of research where put into question when repeated attempts at
replication failed.

In our own experience, we found it useful to provide a virtual
machine image to support reproducibility [18]. In this image, all
compared systems are installed with the data loaded. That way,
all the relevant con�guration, data, queries etc. is contained in
the image. Minor issues with this system are that a) the image is
rather large and needs to be hosted somewhere and b) the pseudo-
anonymity of “DBMS X” can be broken by looking at the image.

We could have cited numerous examples for each of the issues we
discussed in this paper, but refrained from doing so since research
is hardly advanced by pointing �ngers. We would like to note that
the authors are in no way immune from these issues, and one
will probably �nd examples in our previous work. It is somewhat
amusing that the pitfalls described more than 25 years ago (e.g.
in [7]) are still a very real problem today.

Acknowledgments This work was funded by the Netherlands Or-
ganisation for Scienti�c Research (NWO), projects “Process Mining
for Multi-Objective Online Control” (Raasveldt), “Data Mining on
High-Volume Simulation Output” (Holanda) and “Capturing the
Laws of Data Nature” (Mühleisen). We would like to thank Stefan
Manegold for his valuable input on this work.

REFERENCES
[1] 2010. TPC Benchmark C Standard Speci�cation. Technical Report. Transaction

Processing Performance Council. http://www.tpc.org/tpc_documents_current_
versions/pdf/tpc-c_v5.11.0.pdf

[2] 2013. TPC Benchmark H (Decision Support) Standard Speci�cation. Technical
Report. Transaction Processing Performance Council. http://www.tpc.org/tpc_
documents_current_versions/pdf/tpc-h_v2.17.1.pdf

[3] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. 2008. Breaking the
Memory Wall in MonetDB. Commun. ACM 51, 12 (Dec. 2008), 77–85. https:
//doi.org/10.1145/1409360.1409380

[4] Jean-Yves Le Boudec. 2010. Performance Evaluation of Computer and Communi-
cation Systems. EPFL Press.

[5] Jonathan B. Buckheit and David L. Donoho. 1995. WaveLab and Reproducible
Research. Springer New York, New York, NY, 55–81. https://doi.org/10.1007/
978-1-4612-2544-7_5

[6] Jon F. Claerbou and Martin Karrenfach. 1992. Electronic Documents Give Repro-
ducible Research a New Meaning. (1992).

[7] Jim Gray. 1992. Benchmark Handbook: For Database and Transaction Processing
Systems. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[8] Tim Gubner and Peter Boncz. 2017. Exploring Query Execution Strategies for
JIT, Vectorization and SIMD. In ADMS 2017.

[9] Gernot Heiser. 2010. Systems Benchmarking Crimes. (2010). https://www.cse.
unsw.edu.au/~gernot/benchmarking-crimes.html

[10] Torsten Hoe�er and Roberto Belli. 2015. Scienti�c Benchmarking of Parallel
Computing Systems: Twelve Ways to Tell the Masses when Reporting Perfor-
mance Results. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’15). ACM, New York, NY, USA,
Article 73, 12 pages. https://doi.org/10.1145/2807591.2807644

[11] Darrell Hu� and Irving Geis. 1993. How to Lie With Statistics. W. W. Norton &
Company.

[12] Raj Jain. 1991. The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation and Modeling (Book Review).
SIGMETRICS Performance Evaluation Review 19, 2 (1991), 5–11. http://doi.acm.
org/10.1145/122564.1045495

[13] I. Manolescu, L. Afanasiev, A. Arion, J. Dittrich, S. Manegold, N. Polyzotis, K.
Schnaitter, P. Senellart, S. Zoupanos, and D. Shasha. 2008. The Repeatability
Experiment of SIGMOD 2008. SIGMOD Rec. 37, 1 (March 2008), 39–45. https:
//doi.org/10.1145/1374780.1374791

[14] I. Manolescu and Stefan Manegold. 2008. Performance Evaluation in Database
Research: Principles and Experience.

[15] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2009.
Producing Wrong Data Without Doing Anything Obviously Wrong! SIGPLAN
Not. 44, 3 (March 2009), 265–276. https://doi.org/10.1145/1508284.1508275

[16] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd Mowry, Matthew Perron, Ian Quah, Siddharth San-
turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun
Wu, Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Manage-
ment Systems. In CIDR 2017, Conference on Innovative Data Systems Research.
http://db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf

[17] Dhathri Purohith, Jayashree Mohan, and Vijay Chidambaram. 2017. The Dangers
and Complexities of SQLite Benchmarking. In APSys. ACM, 3:1–3:6. http://dl.
acm.org/citation.cfm?id=3124680

[18] Mark Raasveldt and Hannes Mühleisen. 2017. Don’t Hold My Data Hostage -
A Case For Client Protocol Redesign. PVLDB 10, 10 (2017), 1022–1033. http:
//www.vldb.org/pvldb/vol10/p1022-muehleisen.pdf

[19] Michael Stonebraker and Greg Kemnitz. 1991. The POSTGRES Next Generation
Database Management System. Commun. ACM 34, 10 (Oct. 1991), 78–92. https:
//doi.org/10.1145/125223.125262

[20] Erik van der Kouwe, Dennis Andriesse, Herbert Bos, Cristiano Giu�rida, and
Gernot Heiser. 2018. Benchmarking Crimes: An Emerging Threat in Systems
Security. CoRR abs/1801.02381 (2018). http://arxiv.org/abs/1801.02381

[21] Howard Wainer. 1984. How to Display Data Badly. The American Statistician 38,
2 (1984), 137–147. https://doi.org/10.1080/00031305.1984.10483186

[22] David Wheeler. 2017. The DeWitt clause’s censorship should be illegal. (2017).
https://www.dwheeler.com/essays/dewitt-clause.html

A FAIR BENCHMARK CHECKLIST
In order to avoid the common pitfalls described throughout the
paper you can use the following checklist as a data management
systems oriented guide:

• Choosing your Benchmarks.
⇤ Benchmark covers whole evaluation space
⇤ Justify picking benchmark subset
⇤ Benchmark stresses functionality in the evaluation space

• Reproducible. Available shall be:
⇤ Hardware con�guration
⇤ DBMS parameters and version
⇤ Source code or binary �les
⇤ Data, schema & queries

• Optimization.
⇤ Compilation �ags
⇤ System parameters

• Apples vs Apples.
⇤ Similar functionality
⇤ Equivalent workload

• Comparable tuning.
⇤ Di�erent data
⇤ Various workloads

• Cold/warm/hot runs.
⇤ Di�erentiate between cold, warm and hot runs
⇤ Cold runs: Flush OS and CPU caches
⇤ Warm runs: Describe what and is measured, and how?
⇤ Hot runs: Ignore initial runs

• Preprocessing.
⇤ Ensure preprocessing is the same between systems
⇤ Be aware of automatic index creation

• Ensure correctness.
⇤ Verify results
⇤ Test di�erent data sets
⇤ Corner cases work

• Collecting Results.
⇤ Do several runs to reduce interference
⇤ Check standard deviation for multiple runs

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
https://doi.org/10.1145/1409360.1409380
https://doi.org/10.1145/1409360.1409380
https://doi.org/10.1007/978-1-4612-2544-7_5
https://doi.org/10.1007/978-1-4612-2544-7_5
https://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html
https://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html
https://doi.org/10.1145/2807591.2807644
http://doi.acm.org/10.1145/122564.1045495
http://doi.acm.org/10.1145/122564.1045495
https://doi.org/10.1145/1374780.1374791
https://doi.org/10.1145/1374780.1374791
https://doi.org/10.1145/1508284.1508275
http://db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf
http://dl.acm.org/citation.cfm?id=3124680
http://dl.acm.org/citation.cfm?id=3124680
http://www.vldb.org/pvldb/vol10/p1022-muehleisen.pdf
http://www.vldb.org/pvldb/vol10/p1022-muehleisen.pdf
https://doi.org/10.1145/125223.125262
https://doi.org/10.1145/125223.125262
http://arxiv.org/abs/1801.02381
https://doi.org/10.1080/00031305.1984.10483186
https://www.dwheeler.com/essays/dewitt-clause.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 General Guidelines
	2.2 Database-Specific Guidelines

	3 Common Pitfalls
	3.1 Non-Reproducibility
	3.2 Failure To Optimize
	3.3 Apples vs Oranges
	3.4 Over-specific Tuning
	3.5 Cold/Warm/Hot Runs
	3.6 Ignoring Preprocessing Time
	3.7 Incorrect Code

	4 Conclusions and Outlook
	References
	A Fair Benchmark Checklist

